Skip to main content

Water Quality and Health

Partnership of researchers secure new UKRI MRC funding to tackle pharmaceutical contamination in Scotland’s waters

Researchers at the University of Highlands and Island’s Environmental Research Institute, NHS Highland and the University of Nottingham have secured £100,000 of funding to develop and evaluate a framework to incorporate environmental risk into prescribing practices.

Antimicrobial Resistance in Scotland’s Waters - Status and Solutions

This project evaluated the current status of antimicrobial resistance (AMR) in Scotland’s waters and identified emerging monitoring approaches and potential technological solutions. The project involved a literature review and elicitation of expert opinion via the use of a questionnaire survey of academics, industry and regulatory stakeholders, and a follow-up workshop. Findings were synthesised into a policy briefing on “Technologies for monitoring and treatment of antimicrobial resistance in water” and a Policy Note on “Antimicrobial resistance in Scotland’s waters”.

Environmentally informed pharmaceutical prescribing in Scotland

The prescription of pharmaceuticals is the most commonly used healthcare intervention and indisputably has an important role to play in human health. However, pharmaceuticals can have negative effects on the environment and living organisms. Firstly, pharmaceutical use significantly contributes to the healthcare sector’s carbon emissions. Secondly, pharmaceutical residues from human excretions and improper disposal of unused medicines can enter the water environment through wastewater and endanger aquatic life.

Pharmaceuticals in the water environment: baseline assessment and recommendations

This study carried out by researchers at Glasgow Caledonian University (GCU), with the James Hutton Institute and the Environmental Research Institute (University of the Highlands and Islands) delivered the first national assessment of the emerging area of concern around pharmaceutical pollution of Scotland’s water environment, with an innovative Scottish partnership (One Health Breakthrough Partnership) using results to promote practical actions to reduce this globally recognised public health and environmental issue.

Scottish One Health AMR Register (SOHAR)

Living within a viral pandemic has brought home the importance of our relationship with microbes. Yet we are in the midst of another microbial risk that threatens to have a much larger impact on our lives. Microbes (bacteria, viruses, fungi or protists) that cause disease in humans, animals or plants are normally treated with antimicrobial drugs to control their numbers. Drug use has become routine since Alexander Fleming’s famous discovery of penicillin, in public health, veterinary practice and crop protection.

The epidemiology and disease burden potential relating to private water supplies in Scotland

Around 3.3% of Scotland’s population (182,516 people) are served by private water supplies (PWS) together with transient visitors such as tourists. This project sought to develop an understanding of the epidemiology and disease burden contribution of PWS in Scotland on the public health of the populations (indigenous and transient) exposed to the PWS. The project report comprises a risk profile to provide current knowledge about the risks of gastrointestinal pathogens associated with private water supplies in Scotland.

Developing a probabilistic risk model to estimate phosphorus, nitrogen and microbial pollution to water from septic tanks

Septic tank systems (STS) are private sewage treatment facilities which typically serve the population not connected to main sewer networks. There is substantial uncertainty about the impact of septic tanks on water quality, primarily because of a lack of information about the location, number and condition, and inadequate monitoring of the effects of septic tank discharges to surface water and groundwater.